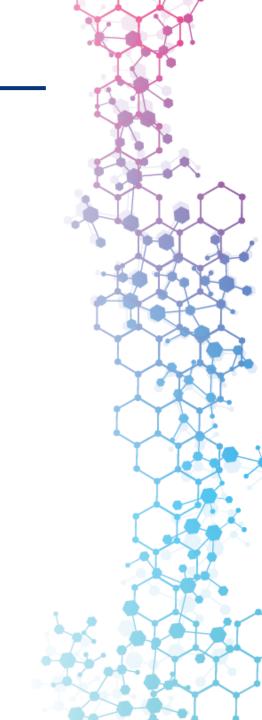
9e ÉDITION

JOURNÉES DU GFCO 2023

Biomarqueurs et analyses moléculaires en oncologie

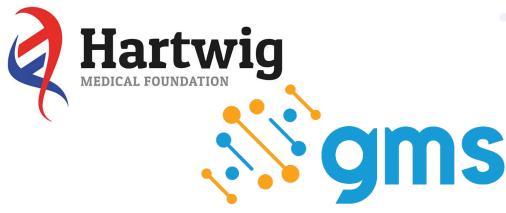
Interprétation des altérations génomiques : Le challenge PFMG

Damien Vasseur, GR, SeqOlA Gaëlle Tachon, CLB, Auragen


LIENS D'INTÉRÊT

Dr Damien Vasseur

- AstraZeneca
- Roche
- Grant Institut Servier

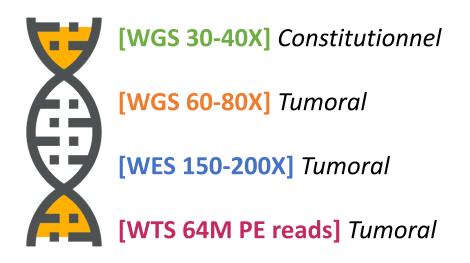

Dr Gaëlle Tachon

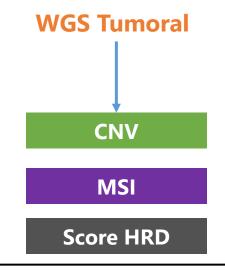
- Expertise pour Janssen, Astrazeneca et Menarini-Stemline
- Invitation congrès : MSD France

Multiplication des programmes de séquençages nationaux

- Sur tissu congelé le plus souvent
- Dans un contexte diagnostic → Accréditation Genomics

External Quality Assessment


Recherche


Diagnostic

england

Genomic Medicine Sweden

De quoi parle-t-on?

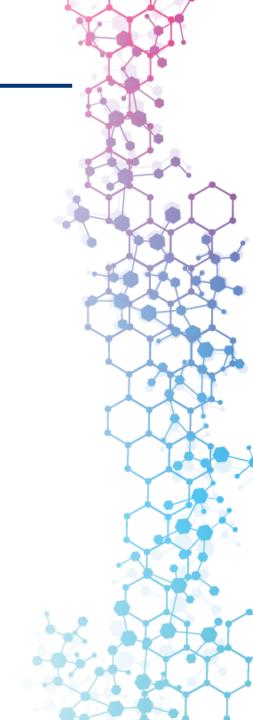
En cours de mise à disposition:
 Variant calling (SNV / Delins < 50bp)

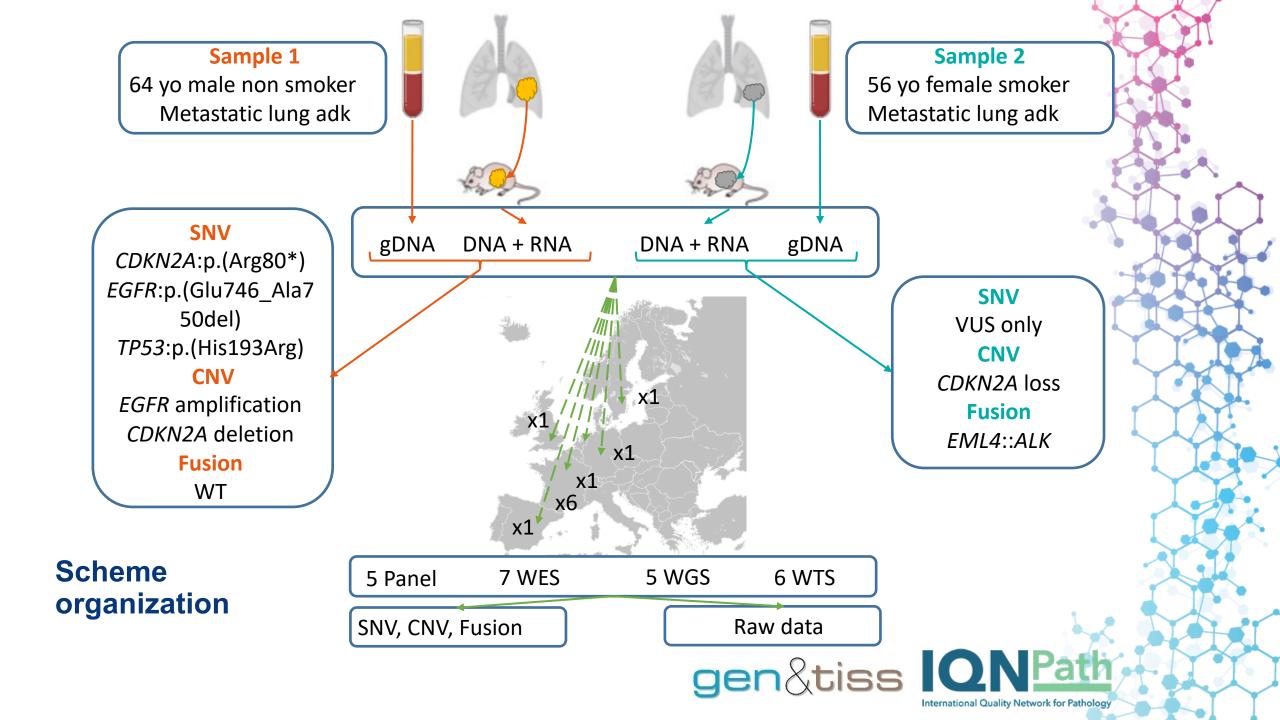
Variant calling
(SNV / Delins < 50bp)

Charge mutationnelle
(TMB)

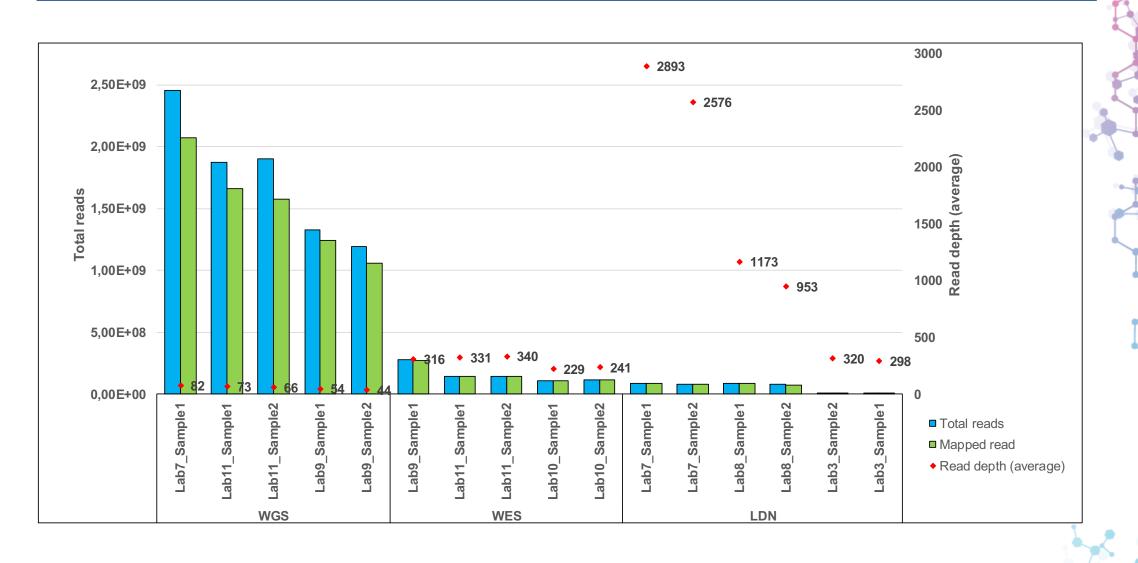
Signatures mutationnelles

Transcrit de fusions

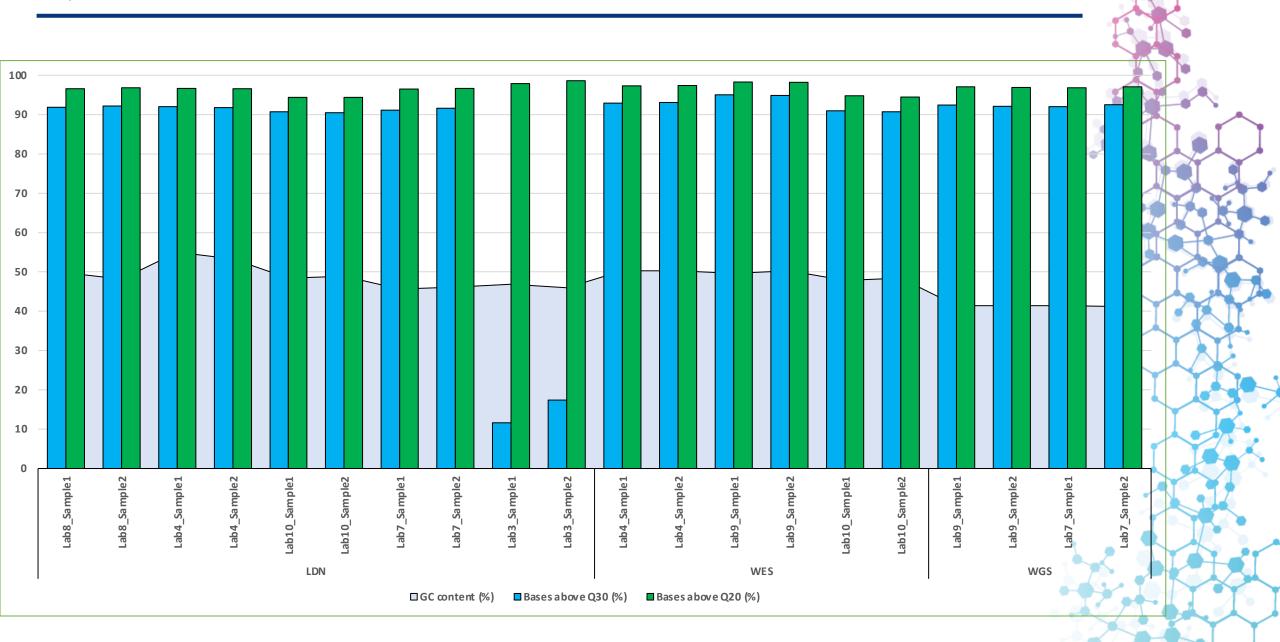

Variant calling (SNV / Delins < 50bp)


Expression (Tables de comptages)

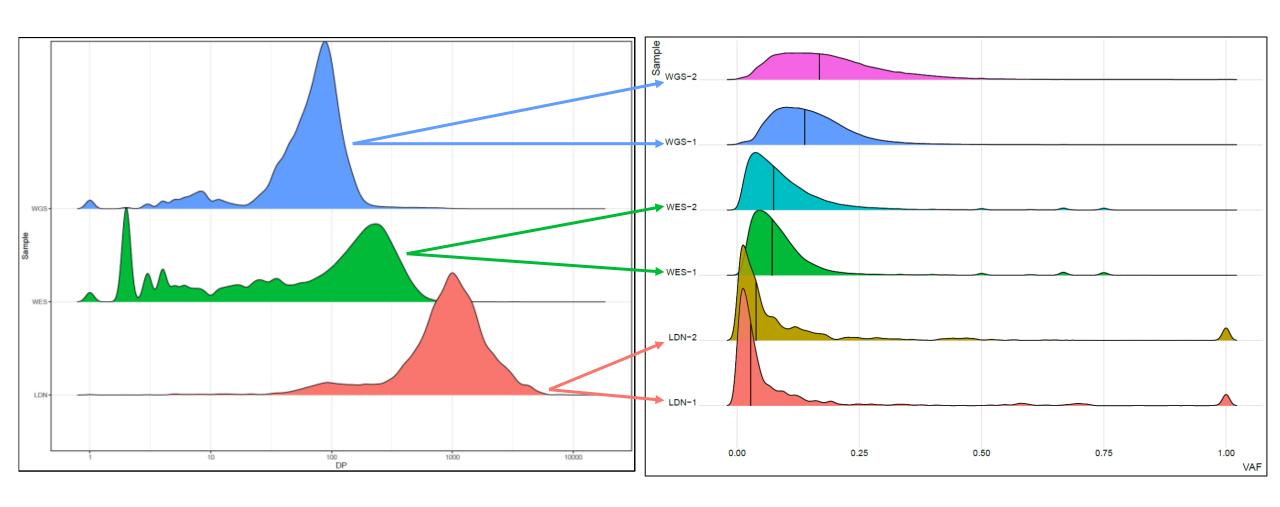
Qu'en est-il de la qualité de ces analyses ?

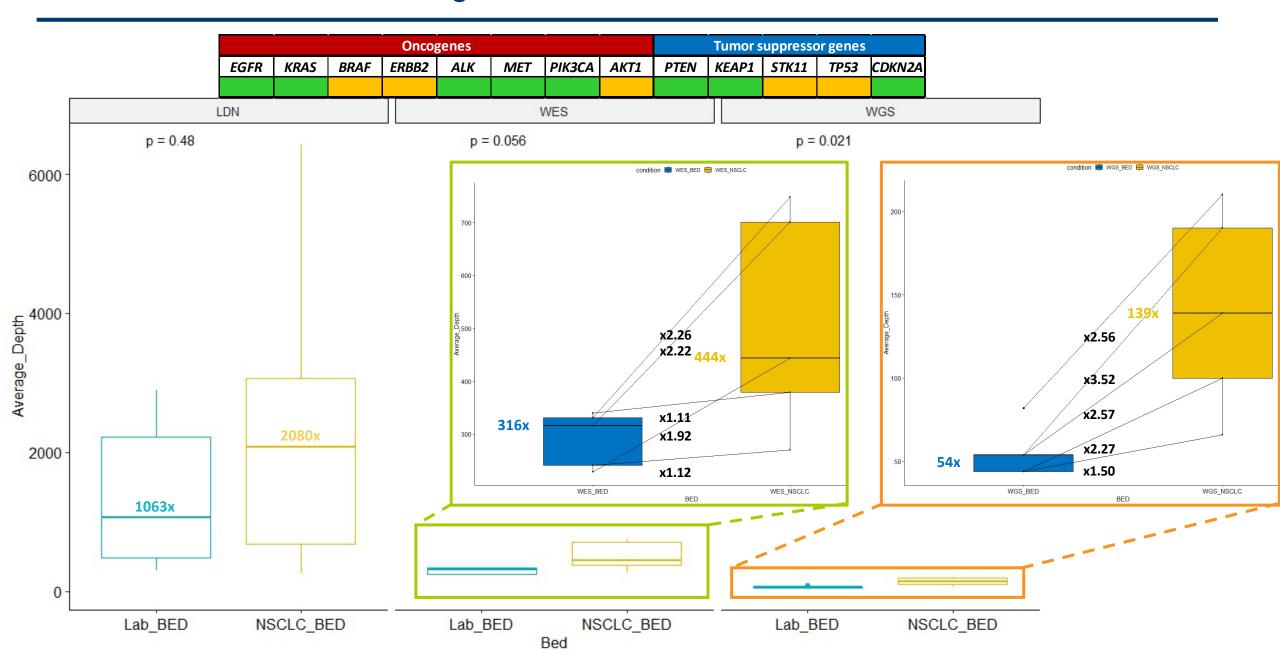

 Non infériorité des techniques très haut debit par rapport aux techniques NGS larges pour la detection des alterations théranostiques?

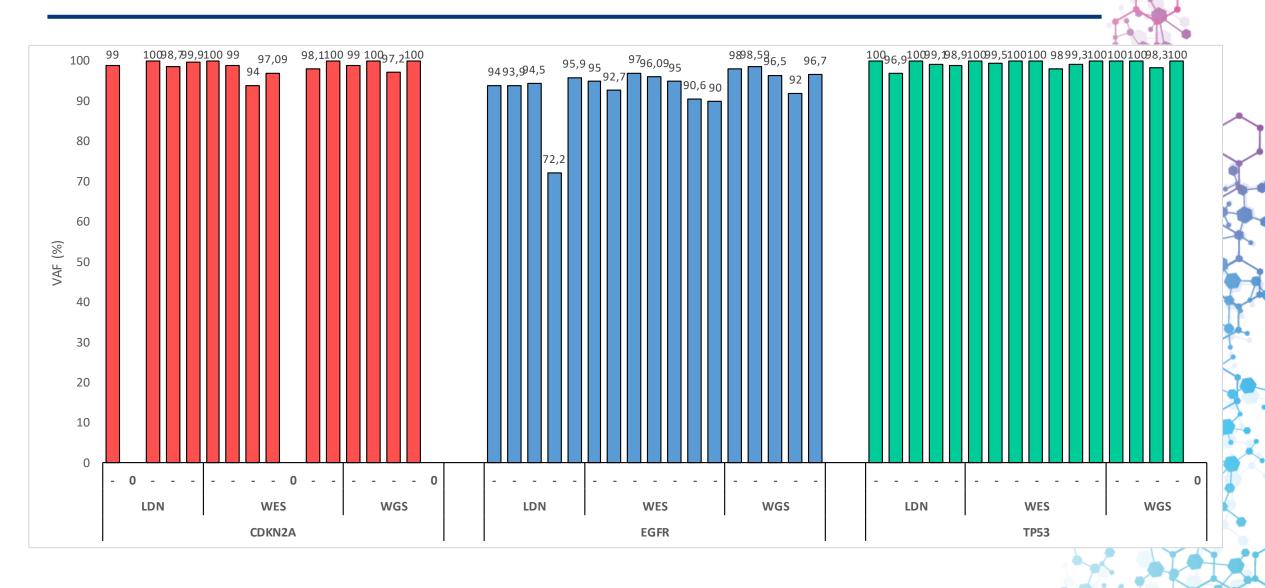
 Comment améliorer la confiance des résultats obtenus avec les analyses très haut debit ?



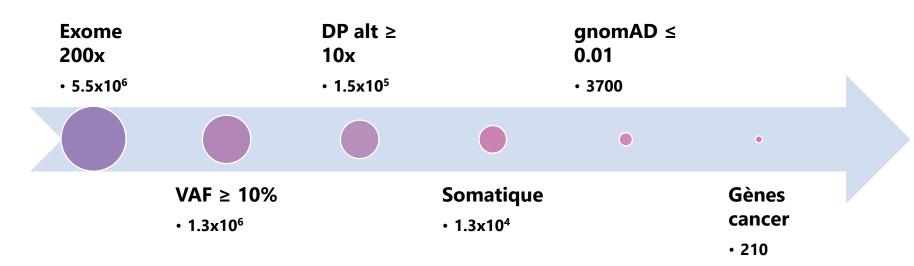
Changement d'échelle induit par les analyses très haut-débit


Qualité bases et contenu en GC

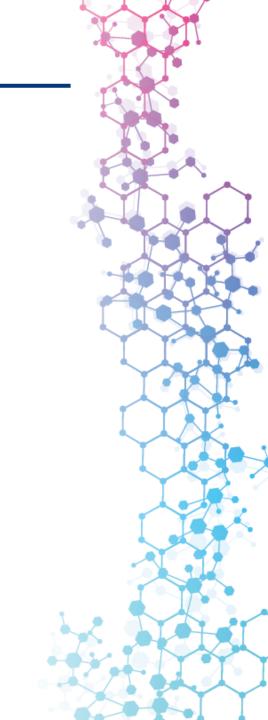

Variations ponctuelles


Profondeurs de séquençage et VAF

Un enrichissement sur les régions d'intérêt



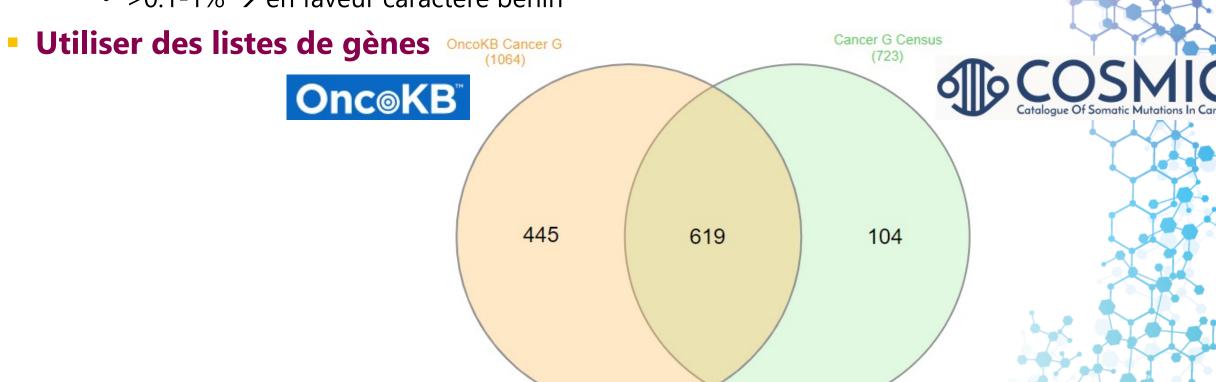
Sample 1 - SNV



Analyses très haut-débit et sélection des variants somatiques

Nécessité d'appliquer des combinaisons de filtres :


• Quels variants rendre ?


Bases de population et listes de gènes

Eliminer les variants fréquents en population

- Seuil ?
 - >5% → polymorphisme
 - >0.1-1% → en faveur caractère bénin

Bases de données et portails variants somatiques

Bases de données :

OncoKB : pathogénicité et actionnabilité

BRAF / V600E

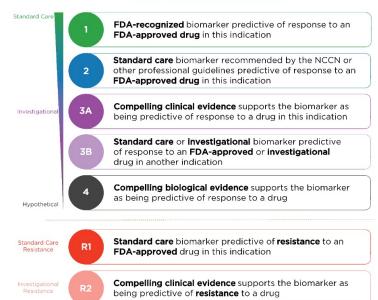
BRAF V600E

Oncogenic ⊚ · Gain-of-function ■ · Level 1 ● · Level Dx2 ■ · FDA Level 2 ②

CIViC

Portails cancer:

- cBioPortal
- Genie
- Intogen
- OMS



WHO Classification of Tumours online

OncoKB[™] Therapeutic Level of Evidence V2

Click here to see Therapeutic Levels of Evidence V1

ESMO Scale for Clinical Actionability of Molecular Targets Hypothetical target

Investigational

Ready for routine use

Combination development

ESCAT evidence tier V

Lack of evidence

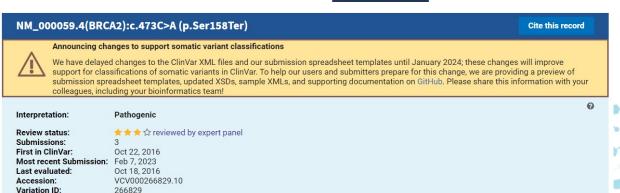
ESCAT evidence tier X

Bases de données variants constitutionnels

Spécifiques de pathologies :

- InSiGHT: MMR & Gastro Intestinal
- GGC
- FrOG

Non spécifiques :


- VarSome
- ClinVar

Description:

single nucleotide variant

Bases de données spécifiques de gènes

Gene	HGVS Nucleotide	HGVS Protein	Protein Abbrev	BIC Designation	Clinical Significance
BRCA2	c.473C>A	p.(Ser158Ter)	S158*	S158X (701C>A),p.Ser158X	Pathogenic

TP53

The TP53 Database

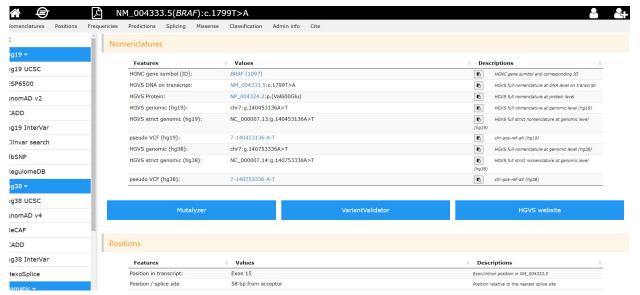
Systematic Assessment of Transactivation Capacities in Yeast and Saos2 Assays by Kato (2003) and Kakudo (2005)

WAF1	MDM2	BAX	H1433s	AIP1	GADD45	NOXA	P53R2	WAF1 (Saos2)	MDM2 (Saos2)	BAX (Saos2)	h1433s (Saos2)	AIP1 (Saos2)	PUMA (Saos2)
20.5	17.6	10.5	10.5	2.6	4.1	7.3	7.8	-2.2	-0.4	0.0	2.0	8.5	-7.4

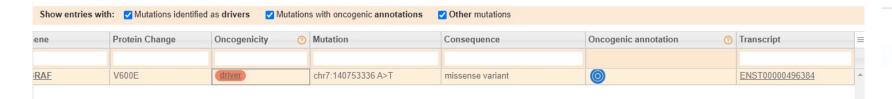
Predicted or Observed Impacts on Protein Functions

Transactivation Class	DNE	DNE_LOF Class	Align-GVGD	BayesDel	REVEL	SIFT	Polyphen2	Structure Function
non-functional	Yes	DNE_LOF	C25	0.5462	0.922	Damaging	D	non-functional

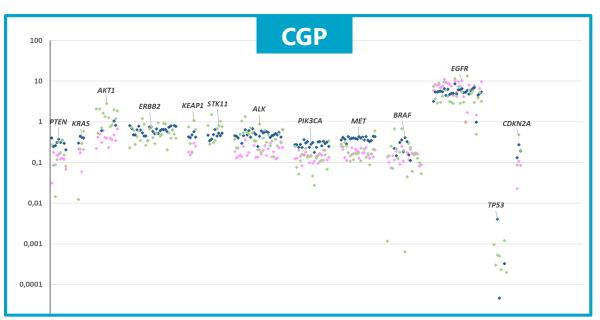
Predicted Effect on p53 Protein Isoforms


TAp53 Alpha	TAp53 Beta	TAp53 Gamma	Delta40p53 Alpha	Delta40p53 Beta	Delta40p53 Gamma	Delta133p53 Alpha	Delta133p53 Beta	Delta133p53 Gamma	Deltap53 Alpha
Altered	Altered	Altered	Altered	Altered	Altered	Altered	Altered	Altered	Altered

Notion de récurrence

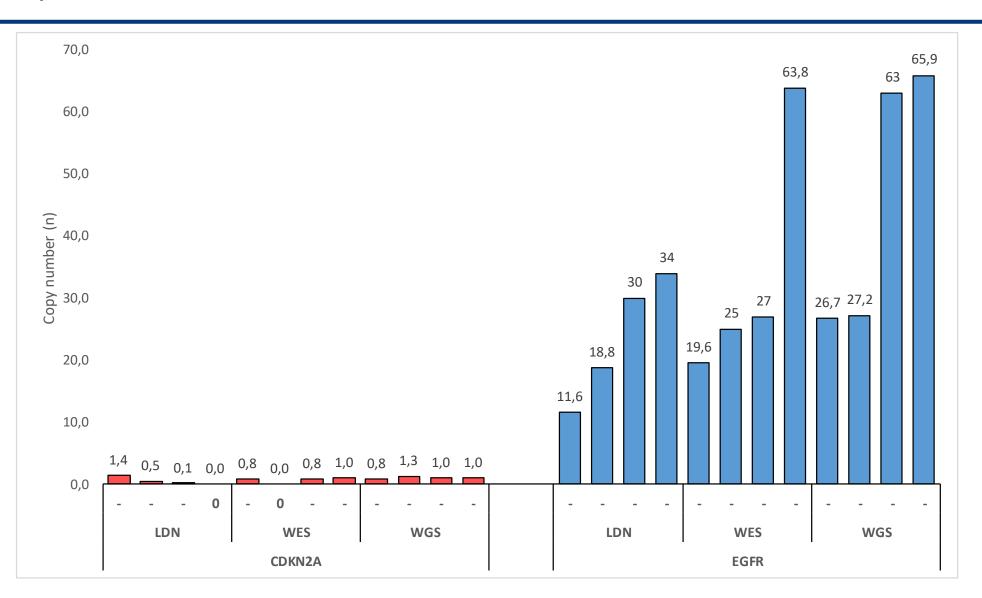


Agrégateurs de données – MobiDetails - CGI



Variations du nombre de copies

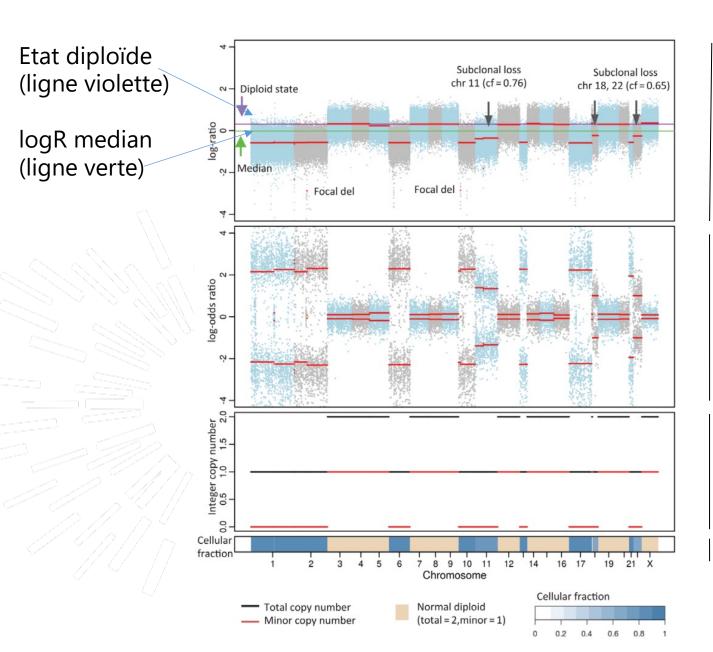
Une uniformité de séquençage très variable



Sample 1 - CNV

Outils utilisés

Facets:


- Permet d'identifier :
 - Délétions homozygotes / hétérozygotes
 - Perte d'hétérozygotie copie neutre (Isodisomie)
 - Gain / amplification allèles spécifiques
 - → Se base sur la profondeur de couverture et les SNP

Wisecondor:

- Développer pour identifier les aneuploïdies
- Se base sur la profondeur de couverture du génome tumorale par rapport à la couverture d'un panel de génome constitutionnels normaux
- Résultats sous forme uniquement de gain ou perte

Asdog: (sur Auragen)

Log ratio reads
Valeur proche de 0
= région diploïde

Déséquilibre allélique Valeur proche de 0 = Équilibre allélique

Copy Number

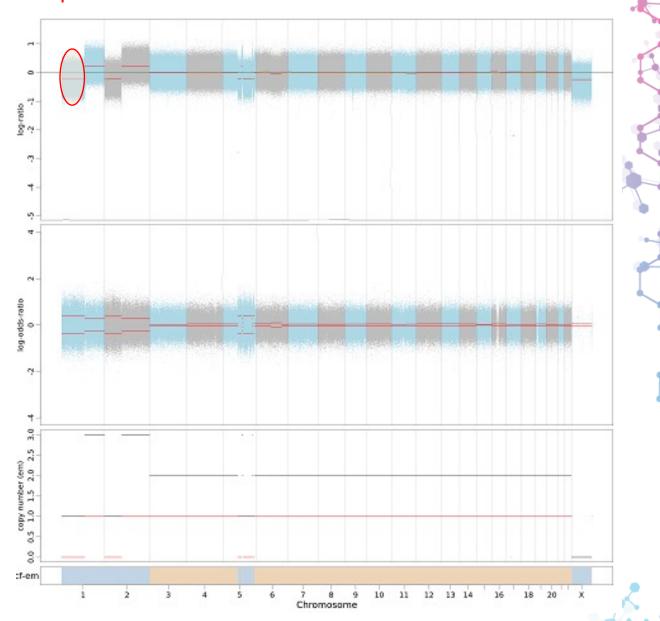
Total (A+B)

Minor (B)

Cellular Fraction

ARID1A 1 copie

Homme de 50 ans Carcinome médullaire de la thyroïde Cellularité tumorale annoncée : 80%


Cellularité tumorale inférée : 30%

Charge mutationnelle: 1.2 mutations/Mb

Statut micro satellitaire stable

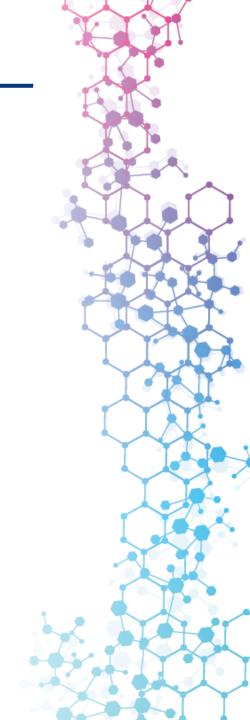
Ploïdie inférée : 2N

Gène	Transcrit	Nomenclature codante	ADN-Tum VAF (alt/ref)	ARN-Tum VAF (alt/ref)	Classification
KRAS	ENST00000256 078.8	KRAS:c.182A>G p.(Gln61Arg)	0.16 (33/209)	NA(NA)	Pathogène
CDKN2C	ENST00000396 148.1	CDKN2C:c.100C >T p.(Gln34*)	0.21 (26/123)	0.84(37/44)	Pathogène
ARID1A	ENST00000324 856.12	ARID1A:c.2733- 2A>T	0.24 (28/115)	NA(NA)	Pathogène

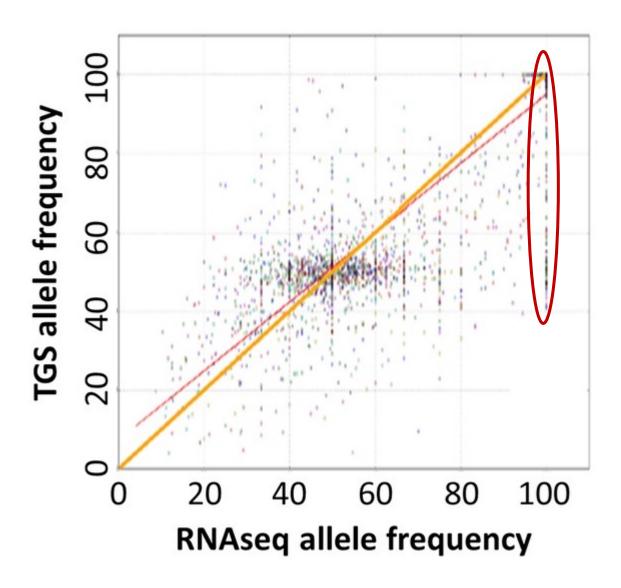
Analyses ARN

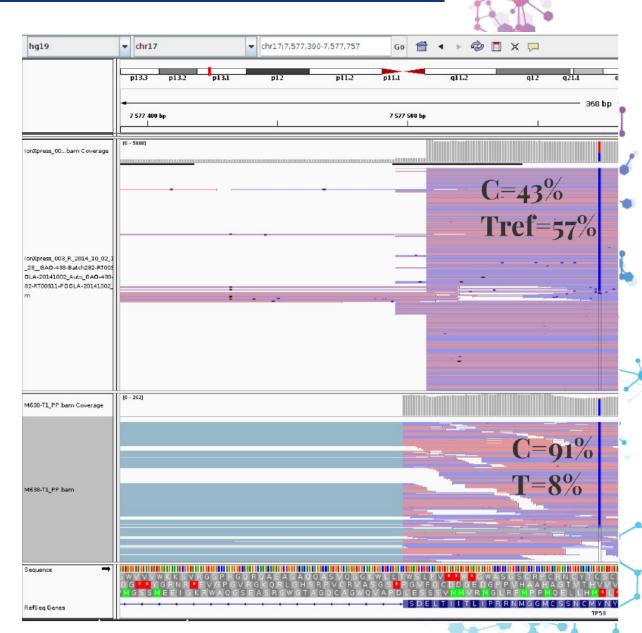
Intérêts de l'analyse de l'ARN

Analyse variants exprimés

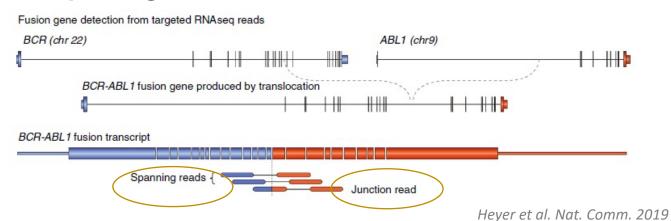

Variant call dédié Confirmation de variants Effet d'épissage

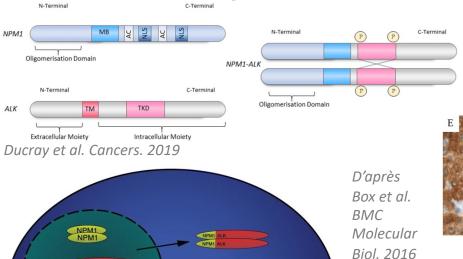
Recherche transcrits de fusion

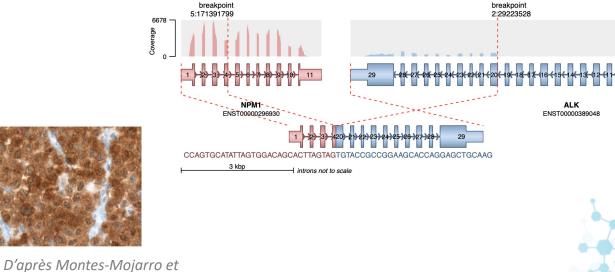

Partenaire agnostique MAIS Transcrits normaux Transcrits « illégitimes »


Autres applications

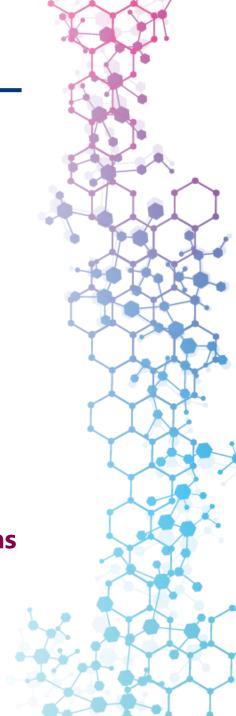
Surexpression de cibles Profil d'expression Détection de virus


Validation des variants DNAseq et expression mono allélique


Détection de transcrits de fusion


Information sur les Junction & Spanning reads

al. Cancers. 2018



Faisceau de preuves

- Compilation de plusieurs outils :
 - Arriba
 - Star-Fusion
 - FusionCatcher
- Filtre proposé pour éliminer les artefacts : FFPM ≥ 0.1
- Approche progressive :
 - Fusion impliquant un gène connu dans la liste Census
 - Fusion Inframe impliquant un oncogène / Fusion frameshift impliquant TSG
- Attention aux anomalies de type "read-through" indiquées comme INTRACHROMOSOMAL (<1Mb) aux transcrits de fusion qui sont présents dans les bases de données non pertinents pour le cancer.

Outils d'interprétation

Fusions relevant to cancer biology

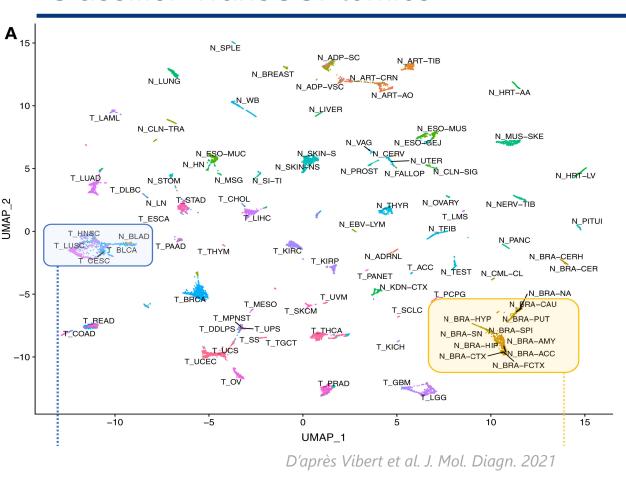
Label	Source Info
Mitelman	Known fusions from the Mitelman database
chimerdb_omim, chimerdb_pubmed	Fusions in OMIM and identified in Pubmed, as catalogued by ChimerDB2
ChimerKB	represents a knowledgbase of fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences, derived from http://ercsb.ewha.ac.kr/fusiongene
ChimerPub	includes fusion genes obtained from text mining of PubMed abstracts, derived from http://ercsb.ewha.ac.kr/fusiongene

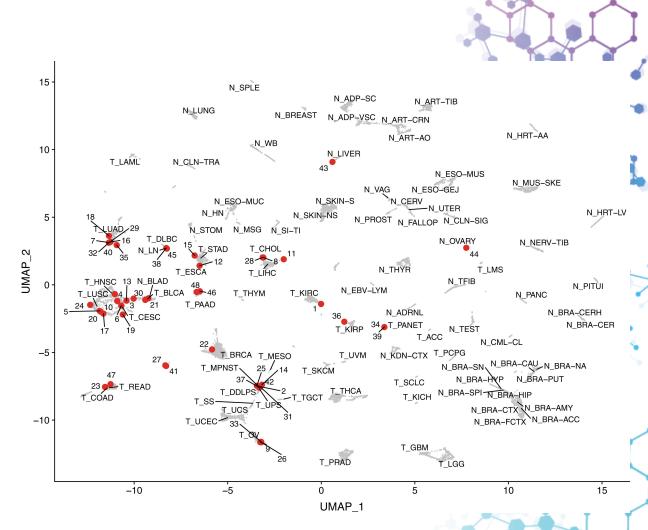
Red Herrings: Fusion pairs that may not be relevant to cancer, and potential false positives.

Label	Source Info
GTEx_recurrent_StarF2019	Fusions found recurrently in GTEx as mined using STAR-Fusion v1.5.0
BodyMap	Fusions found by STAR-Fusion as applied to the Illumina Human Body Map reference data

ARN et niveaux d'expression

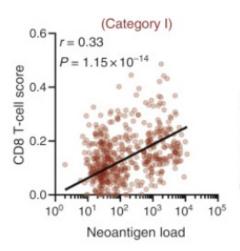
Pathology	ID	ESR1_IHC	ESR1_R	NA	ERBB2_IHC	ERBB2_R	NA
Breast	M654	+	+	*	-	-	*
Breast	M658	+	+	*	-	-	*
Breast	M662	+	+	*	-	-	*
Breast	M678	-	-	*	+	+	*
Breast	M681	+	+	*	-	-	*
Breast	M694	?	+		?	-	
Breast	M702	+	+	*	-	-	*
Breast	M723	+++	+	*	-	-	*

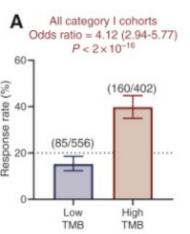

Détection de virus

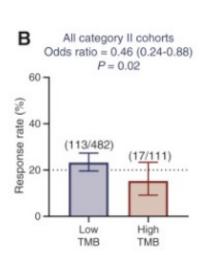

Table 3. Quantification of 3 types of HPV from PCR (number of copies of HPV per ng of DNA) vs. RNAseq (counts and percentage of total).

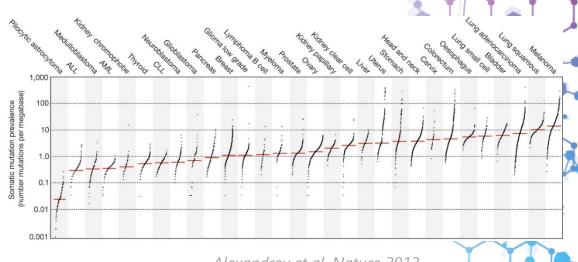
			PCR			RNAseq	
ID	Cancer type	HPV16	HPV18	HPV33	HPV16	HPV18	HPV33
370	H&N	-	-	-	-	-	-
536	H&N	-	-	-	-	-	-
646	H&N	-	-	-	-	-	-
653	H&N	379	-	-	14482(0.01%)	-	-
666	H&N	842	-	-	30421(0.02%)	-	-
670	H&N	-	-	-	-	-	-
683	H&N	-	-	-	-	-	-
708	H&N	-	-	-	-	-	-
721	H&N	-	-	-	-	-	-

Classifier TransCUPtomics




Autres paramètres




Tumor Mutational Burden

- Calcul à partir du Whole Exome Sequencing Tumoral
- Filtres appliqués :
 - Mutect2
 - VAF > 0.1
 - Profondeur ≥ 50X
 - Nombre de reads alternatifs ≥ 5
 - MAF gnomAD < 0.001
 - 0 faible qualité, non codants, synonymes

Alexandrov et al. Nature 2013

Micro Satellite Instability

Résultante de la déficience du système MMR (DNA mismatch repair)

Facteur pronostique / theranostique dans certains cancers (cancer colorectal, leucémie ...)

RESEARCH

CANCER BIOMARKERS

Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade

Dung T. Le, ^{1,2,3} Jennifer N. Durham, ^{1,2,3;} Kellie N. Smith, ^{1,3*} Hao Wang, ^{3*} Bjarne R. Bartlett, ^{2,4*} Laveet K. Aulakh, ^{2,4} Steve Lu, ^{3,4} Holly Kemberling, ³ Cara Wilt, ³ Brandon S. Luber, ³ Fay Wong, ^{2,4} Nilofer S. Azad, ^{1,3} Agnieszka A. Rucki, ^{1,3} Dan Laheru, ³ Ross Donehower, ³ Atif Zaheer, ⁵ George A. Fisher, ⁶ Todd S. Crocenzi, ⁷ James J. Lee, ⁸ Tim F. Greten, ⁹ Austin G. Duffy, ⁹ Kristen K. Ciombor, ¹⁰ Aleksandra D. Eyring, ¹¹ Bao H. Lam, ¹¹ Andrew Joe, ¹¹ S. Peter Kang, ¹¹ Matthias Holdhoff, ³ Ludmila Danilova, ^{1,3} Leslie Cope, ^{1,3} Christian Meyer, ³ Shibin Zhou, ^{1,3,4} Richard M. Goldberg, ¹² Deborah K. Armstrong, ³ Katherine M. Bever, ³ Amanda N. Fader, ¹³ Janis Taube, ^{1,3} Franck Housseau, ^{1,3} David Spetzler, ¹⁴ Nianqing Xiao, ¹⁴ Drew M. Pardoll, ^{1,3} Nickolas Papadopoulos, ^{3,4} Kenneth W. Kinzler, ^{3,4} James R. Eshleman, ¹⁵ Bert Vogelstein, ^{1,3,4} Robert A. Anders, ^{1,3,1} Luis A. Diaz Jr. ^{1,2,3} †

Dung et al. Science 2017

Diagnostic de cancer avec prédisposition constitutionnelle (mutation de gène de la voie MMR)

- Syndrome de Lynch (hétérozygote)
- Syndrome CMMRD constitutional mismatch repair deficiency (homozygote)

<u>Mécanisme</u> : Instabilité génomique

- → Génération de protéines mutées/tronquées
 - → Apparition de néo-antigènes
 - → Infiltrat lymphocytaire tumoral important

COMPTE RENDU COMPLEMENTAIRE

Femme de 52 ans carcinome endométrial

Cellularité tumorale annoncée : 60%

Cellularité tumorale inférée : 40%

Charge mutationnelle: 2.98 mutations/Mb

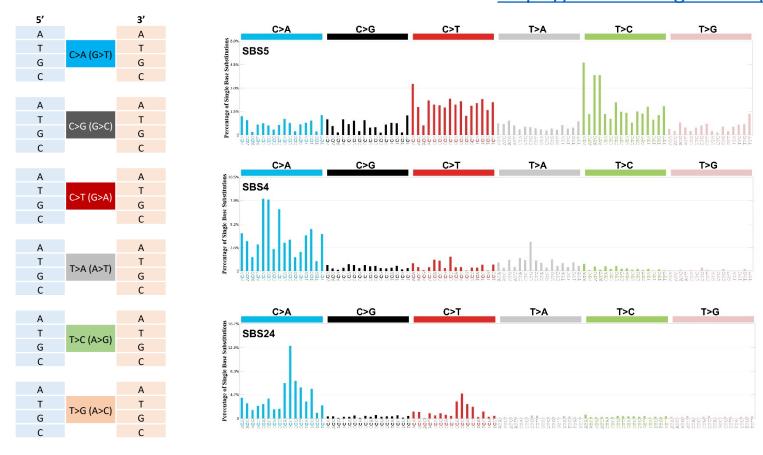
Statut micro satellitaire stable 0,01% (155/1378823)

Ploïdie inférée: 3.1N

Une étude immunohistochimique complémentaire a été demandée sur ce prélèvement Sequoia en raison d'une discordance des données moléculaires avec les données cliniques.

Nous avons vérifié sur le prélèvement fixé disponible parallèlement au prélèvement congelé Sequoia, entièrement utilisé, que les cellules tumorales expriment fortement les protéines MSH2 et MSH6, mais qu'en revanche, elles n'expriment pas MLH1 et PMS2, comme attendu. Par ailleurs, nous avons vérifié que les cellules tumorales expriment fortement PAX8, ce qui est compatible avec le diagnostic d'adénocarcinome endométrioïde proposé pour cette patiente.

CONCLUSION:

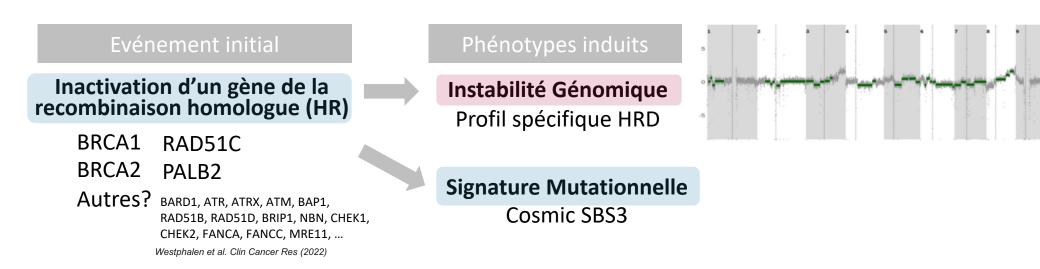

Confirmation immunohistochimique d'un statut MSI.

١١.														
	/	Case M	Turnor 1	Turror cell	HE result lake parkers	/.	dyllar	ASIASI	10/85/S				Watani Watani	ariar Ar vo
/	/ ,	/ /	/ /	/		/	//	//	//	/	//		/	/
	33	UCEC	30%	pMMR	normal	MSS			Ť	Т		MSS MSS	POS	
	34	UCEC	50%	pMMR	normal	MSS						MSS MSS		
	36	UCEC	20%	pMMR	normal	MSS						MSS MSS		
	37	UCEC	75%	pMMR	normal	MSS						MSS MSS	POS	
	38	UCEC	30%	pMMR	normal	MSS						MSS MSS		
	39	UCEC	40%	pMMR	normal	MSS						MSS MSS		•
	40	UCEC	50%	pMMR	normal	MSS						MSS MSS		
	41	UCEC	60%	pMMR	normal	MSS						MSS MSS	POS	
	43	UCEC	50%	pMMR	normal	MSS						MSS NEG	POS	1
	29	UCEC	50%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSS MSI MSI		
	30	UCEC	40%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSI-H MSI		
	31	UCEC	40%	dMMR	loss of MLH1 and PMS2 expression	MSS						MSI-L MSS POS		•
	42	UCEC	50%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSI-H MSI	POS	
	44	UCEC	40%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSI-H MSI	NEG	
	46	UCEC	75%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSI-H MSI	NEG	4
	47	UCEC	25%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSS MSI POS	NEG	1
	48	UCEC	30%	dMMR	loss of MLH1 and PMS2 expression	MSI-H						MSI-H MSI	NEG	C
	49	UCEC	50%	dMMR	loss PMS2, partial loss MSH6/MLH1	MSS						MSI-H POS	NEG	-
	45	UCEC	30%	dMMR	loss of MSH6 expression	MSS						MSS NEG	NEG	ŀ
	32	UCEC	20%	dMMR	loss of MSH2 and MSH6 expression	MSS						MSI-H MSI NEG		C/
	35	UCEC	20%	dMMR	loss of MSH6 expression	MSS						MSS POS		GI

Dedeurwaerdere F et al Sci. Rep. 2021

Mutational signatures

- Combinaison unique de mutations consécutives à de multiples processus
- 6 classes de substitutions possibles avec le « contexte » aboutissant à 96 possibilités
 https://cancer.sanger.ac.uk/cosmic/signatures



Signature mutationnelle liée à l'âge

Signature mutationnelle liée au tabac

Signature mutationnelle liée à l'aflatoxine

Homologous Recombination Deficiency

Bénéfice avéré dans les cancers de l'ovaire

Actuellement, AMM pour inhibiteurs de PARP en maintenance après réponse au platine dans les cancers de l'ovaire avec mutation BRCAg/s ou HRD

Bénéfice émergeant dans divers types de cancer

Bénéfice des PARPi dans d'autres types de cancers mutés BRCA : sein, prostate, pancréas

=> Réel intérêt théranostique d'identifier les tumeurs HRD

Outils disponibles

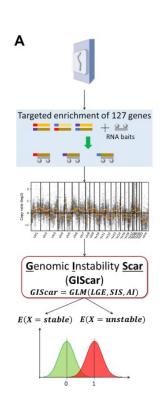
Genomic Instability Scar (GIScar)

- Centre François Baclesse Caen
- Panel de 127 gènes + bio-informatique
 - Number of large genomic events
 - Structurale instability score
 - Allelic imbalance

ShallowHRD v2

- Institut Curie
- Low pass WGS
 - Large genomic alterations

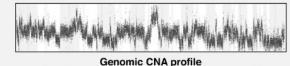
scarHRD


Sztupinszki et al., npj Breast Cancer 4,16 (2018

HRDetect

Davies et al., Nat.Med. 23,517-525 (2017)

CHORD

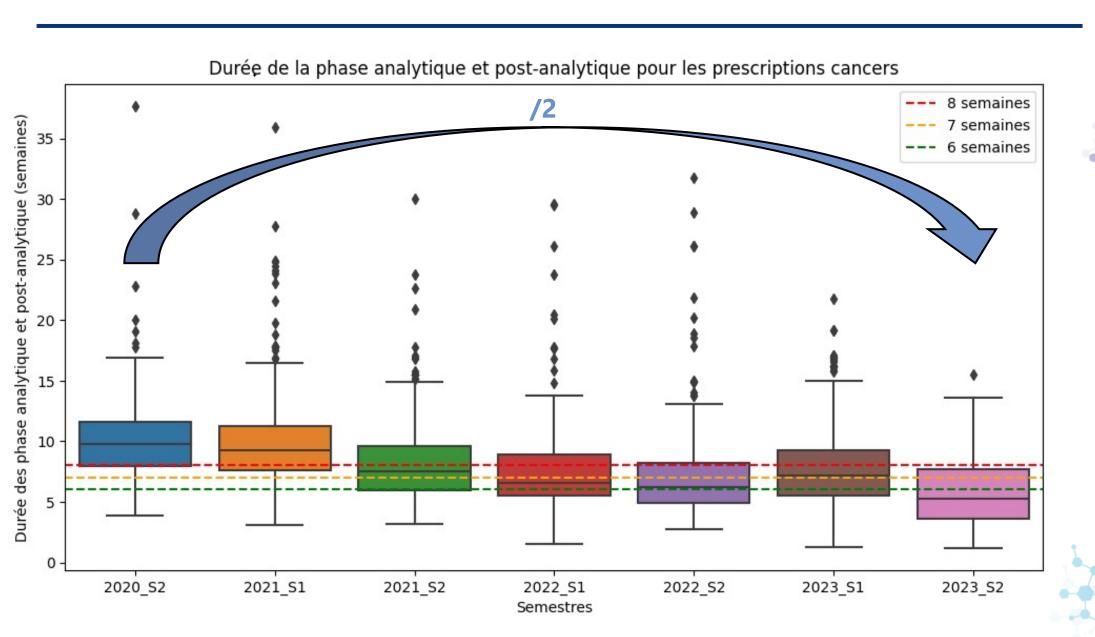

Nguyen et al., Nat. Commun. 11:5584 (2020)

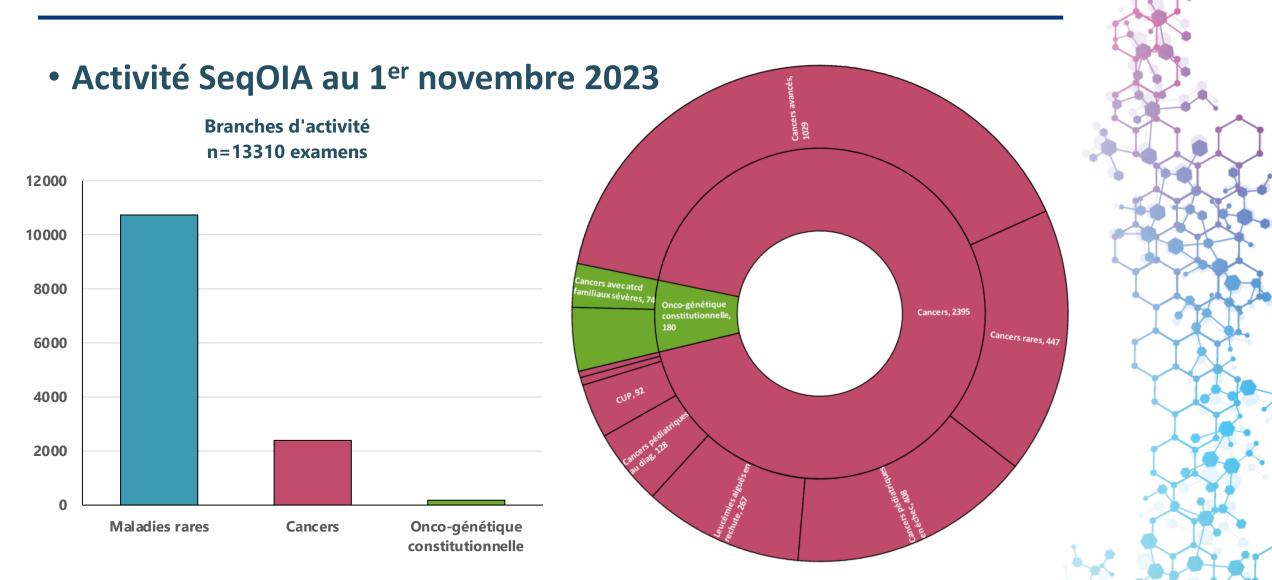
Leman et al. Clin. Cancer Res. 2023

SAMPLE PROCESSING

Genomic CNA profile

Read Depth approach and GC normalization (controlFreec)





PFMG fin 2023 : où en sommes-nous?

Un effort sur la réduction des délais

Et maintenant?

Réalisation d'examens pangénomiques à partir de prélèvements FFPE dans le cadre du Plan France Médecine Génomique 2025


A partir du 2 Novembre 2023, il sera possible d'adresser des prélèvements FFPE à AURAGEN et SeqOIA pour les patients atteints de :

- ✓ cancers du pancréas ;
- ✓ cholangiocarcinomes;
- ✓ cancers de primitif inconnu ;
- ✓ néoplasies neuroendocrines.

et répondant aux critères des pré-indications de cancérologie du PFMG2025.

S'agissant du conditionnement FFPE, trois points de vigilance sont à relever :

- Les performances analytiques peuvent être moindres et le taux d'échec analytique supérieur.
 Il est donc indispensable de privilégier les prélèvements congelés autant que possible ;
- Il est recommandé d'adresser des prélèvements FFPE datant de moins de 6 mois ;
- Durant les premiers mois, le délai cible de retour des résultats sera de 8 à 10 semaines, avec pour objectif une diminution progressive autour de 4 à 6 semaines.

PROJECT**GENIE**

AACR

Interprétation des altérations génomiques : Le challenge PFMG

biologiste	Etablissement	Nbre CR octobre 2023	% de contribution
Biologiste 1	Centre 1	32	29.4
Biologiste 2	Centre 2	20	18.3
Biologiste 3	Centre 3	15	13.8
Biologiste 4	Centre 4	10	9.2
Biologiste 5	Centre 5	7	6.4
Biologiste 6	Centre 6	6	5.5
Biologiste 7	Centre 5	5	4.6
Biologiste 8	Centre 3	3	2.8
Biologiste 9	Centre 5	2	1.8
Biologiste 10	Centre 7	2	1.8
Biologiste 11	Centre 1	2	1.8
Biologiste 12	Centre 5	1	0.9
Biologiste 13	Centre 8	1	0.9
Biologiste 14	Centre 8	1	0.9
Biologiste 15	Centre 9	1	0.9
Biologiste 16	Centre 4	1	0.9

83% 6 biologistes

Remerciements

- PFMG/SeqOIA
 - Biologistes responsables
 - Du laboratoire : Dr Pierre Blanc
 - Tumeurs solides : Dr Jennifer Wong
 - Ingénieur
 - Sylvain Dugat
 - Bioinformatique
 - Alban Lermine

- PFMG/Auragen
 - Auragen Equipe organisatrice:
 - Sihem Kheddouci
 - Auragen Equipe Bioinformatique
 - Alain Viari
 - Elise Dugas
 - Auragen Biologiste
 - Adrien Buisson, Marc Barritault et pleins d'autres...

MERCI DE VOTRE ATTENTION

